Private Learning and Sanitization: Pure vs. Approx. Differential Privacy

Uri Stemmer

Ben-Gurion University

Join work with Amos Beimel and Kobbi Nissim

Why Private Learners?

Often, this algorithmic task can be abstracted as a learning problem:

• Bank is interested in predicting (based on past customers) whether new customers are good/bad credit

Differential Privacy

Dwork, McSherry, Nissim, Smith 2006

Changing one record does not change the output distribution "too much"

Differential Privacy

Dwork, McSherry, Nissim, Smith 2006

Changing one record does not change the output distribution **"too much"**

A (rand) algorithm \mathcal{A} is differentially private if for all neighboring databases S_1, S_2 and for all sets of outputs F:

 $\Pr[\mathcal{A}(S_1) \in F] \approx \Pr[\mathcal{A}(S_2) \in F]$

Pure Differential Privacy

Dwork, McSherry, Nissim, Smith 2006

Changing one record does not change the output distribution **"too much"**

A (rand) algorithm \mathcal{A} is $\boldsymbol{\epsilon}$ differentially private if for all neighboring databases S_1, S_2 and for all sets of outputs F:

 $\Pr[\mathcal{A}(S_1) \in F] \leq \frac{e^{\epsilon}}{2} \cdot \Pr[\mathcal{A}(S_2) \in F]$

Approx. Differential Privacy

Dwork, McSherry, Nissim, Smith 2006 Dwork, Kenthapadi, McSherry, Mironov, Naor 2006

Changing one record does not change the output distribution **"too much"**

A (rand) algorithm \mathcal{A} is (ϵ, δ) differentially private if for all neighboring databases S_1, S_2 and for all sets of outputs F:

 $\Pr[\mathcal{A}(S_1) \in F] \leq \frac{e^{\epsilon}}{\epsilon} \cdot \Pr[\mathcal{A}(S_2) \in F] + \delta$

Our Results:

- Sample complexity of Private Learning and Sanitization can be drastically smaller if we settle for approximate differential privacy.
- Label Privacy [Chaudhuri and Hsu 2011] Learning model with weakened privacy demands. We settle the question of sample complexity: O(VC).
 - Same as non-private learning.
 - Not is this talk.
- Natural connection between Private Learning and Sanitization, leads to lower bounds on Sanitization.
 Not in this talk.

What is Private Learning?

Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08

Definition:

PAC Learning Differential Privacy

Private Learning

• Domain X.

- Domain X.
- Set C of boolean functions over X.
 - for example: INTERVAL_d

- Domain X.
- Set C of boolean functions over X.
 - for example: INTERVAL_d

- Domain X.
- Set C of boolean functions over X.
 - for example: INTERVAL_d
- Labeled sample.

- Domain X.
- Set C of boolean functions over X.
 - for example: INTERVAL_d
- Labeled sample.
- Output a classifier h.

- Domain X.
- Set C of boolean functions over X.
 - for example: INTERVAL_d
- Labeled sample.
- Output a classifier h.

Related work in Private Learning (partial list)

[BDMN 05] First private learning algorithms. SQ based.

[KLNRS 08] Define private learning, and showed: Every class C can be privately learned using $\log|C|$ labeled samples.

[BKN 10] Sample complexity of private learning.

[CH 11] Learning in continuous domain, label privacy.

[CM 08, CMS 11, KST 12] Machine learning.

[BLR 08, DNRRV 09, ...] Synthetic Data.

[DRV 10] Private Boosting.

Running Example: INTERVAL_d

Facts:

- non-private proper learner with O(1) samples.
- ϵ -private proper learner: $\Theta(d)$ samples [BBKN 10].

Running Example: INTERVAL_d

Facts:

- non-private proper learner with O(1) samples.
- ϵ -private proper learner: $\Theta(d)$ samples [BBKN 10].

We show:

 (ϵ, δ) -private proper learner with $2^{O(\log^* d)}$ samples.

Privately Learning intervals: Ideas and Intuition.

We show: (ϵ, δ)-private proper learner with $2^{O(\log^* d)}$ samples.

The Goal:

Given a labeled sample, choose a concept with small error.

- Contains "a lot" of ones, <u>and</u> "a lot" of zeroes.
- Every interval I ⊆ X of length ≤ |G|/4 either does not contain "too many" ones <u>or</u> does not contain "too many" zeroes.

- Contains "a lot" of ones, <u>and</u> "a lot" of zeroes.
- Every interval I ⊆ X of length ≤ |G|/4 either does not contain "too many" ones <u>or</u> does not contain "too many" zeroes.

- Contains "a lot" of ones, <u>and</u> "a lot" of zeroes.
- Every interval I ⊆ X of length ≤ |G|/4 either does not contain "too many" ones <u>or</u> does not contain "too many" zeroes.

- Contains "a lot" of ones, <u>and</u> "a lot" of zeroes.
- Every interval I ⊆ X of length ≤ |G|/4 either does not contain "too many" ones <u>or</u> does not contain "too many" zeroes.

- Contains "a lot" of ones, <u>and</u> "a lot" of zeroes.
- Every interval I ⊆ X of length ≤ |G|/4 either does not contain "too many" ones <u>or</u> does not contain "too many" zeroes.

- Contains "a lot" of ones, <u>and</u> "a lot" of zeroes.
- Every interval I ⊆ X of length ≤ |G|/4 either does not contain "too many" ones <u>or</u> does not contain "too many" zeroes.

- Divide G into 4 equal intervals, and define 5 "equally spread" concepts in G.
- At least one concept has small error.

- Divide G into 4 equal intervals, and define 5 "equally spread" concepts in G.
- At least one concept has small error.

- Divide G into 4 equal intervals, and define 5 "equally spread" concepts in G.
- At least one concept has small error.
- Choose one using the Exp. Mechanism [McSherry and Talwar 07] (requires O(1) samples).

- Divide G into 4 equal intervals, and define 5 "equally spread" concepts in G.
- At least one concept has small error.
- Choose one using the Exp. Mechanism [McSherry and Talwar 07] (requires 0(1) samples).

Conclusion: suffices to find a 4-good interval.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.
- Say $G \in A_3$. Then A_3 contains "lots" of ones <u>and</u> zeroes.
- Every other A_i cannot contain both ones and zeroes.
- Look for A_i with "lots" of ones <u>and</u> zeroes.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.
- Choose an interval using A_{dist} [ST 2013] (requires O(1) samples).

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.
- Choose an interval using A_{dist} [ST 2013] (requires O(1) samples).
- The chosen interval is of length $2|G| \implies 4$ -good !

Assume we can (privately) obtain a $J \in \mathbb{R}$ s.t. there exists a 2-good interval G of length J.

- Divide X into intervals $\{A_i\}$ and $\{B_i\}$ of length $\underline{2J}$, where the $\{B_i\}$'s are right-shifted by **J**.
- At least one interval contains **G**.
- Choose an interval using A_{dist} [ST 2013] (requires O(1) samples).
- The chosen interval is of length $2|G| \implies 4$ -good !

Conclusion: suffices to find a <u>length</u> J of a 2-good interval.

 A_2 A_3 A_4 A_5

Computing the length J

Easy solution:

- Noisy binary search on $0 \le J \le 2^d$.
- *d* noisy comparisons requires *d* samples.

Computing the length J

Easy solution:

- Noisy binary search on $0 \le J \le 2^d$.
- d noisy comparisons requires d samples.

Better solution:

- Noisy binary search on the power $0 \le j \le \log d$ of a 2-good interval of length J= 2^{j} .
- log d noisy comparisons requires log d samples.

Computing the length J

Easy solution:

- Noisy binary search on $0 \le J \le 2^d$.
- d noisy comparisons requires d samples.

Better solution:

- Noisy binary search on the power $0 \le j \le \log d$ of a 2-good interval of length J= 2^{j} .
- log d noisy comparisons requires log d samples.

In the paper:

Use recursion on binary search and significantly reduce the costs.

Theorem:

There exists an (ϵ, δ) -private learner for INTERVAL_d with sample complexity $2^{\log^* d}$

Summary and Open Problems

- What we saw:
 - Efficient (ϵ, δ) -private learner for $INTERVAL_d$ with low sample complexity.
 - This separates the sample complexity of (ϵ, δ) -private and ϵ -private learners.
- Other results:
 - Efficient (ϵ, δ) -private for other concept classes with even lower sample complexity (independent of the domain).
 - Similar results for Data Sanitization.
- Open problem:

Lower bounds on the sample complexity of (ϵ, δ) -private learners?