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Often, this algorithmic task can be abstracted as a learning problem: 

• Bank is interested in predicting (based on past customers) whether 
new customers are good/bad credit 
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A (rand) algorithm 𝓐 is 𝝐, 𝜹  differentially 
private if for all neighboring databases 𝑺𝟏, 𝑺𝟐 

and for all sets of outputs 𝑭: 

 
𝐏𝐫 𝓐 𝑺𝟏 ∈ 𝑭 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝓐 𝑺𝟐 ∈ 𝑭 + 𝜹 

Approx. Differential Privacy 
Dwork, McSherry, Nissim, Smith 2006 

Changing one record does not change the output  
distribution “too much” 

 

≈ 



A (rand) algorithm 𝓐 is 𝝐, 𝜹  differentially 
private if for all neighboring databases 𝑺𝟏, 𝑺𝟐 

and for all sets of outputs 𝑭: 

 
𝐏𝐫 𝓐 𝑺𝟏 ∈ 𝑭 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝓐 𝑺𝟐 ∈ 𝑭 + 𝜹 

Approx. Differential Privacy 
Dwork, McSherry, Nissim, Smith 2006 

Changing one record does not change the output  
distribution “too much” 

 

Pure 



A (rand) algorithm 𝓐 is 𝝐, 𝜹  differentially 
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and for all sets of outputs 𝑭: 
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Our Results: 

• Sample complexity of Private Learning and 
Sanitization can be drastically smaller if we settle 
for approximate differential privacy. 

 

• Label Privacy [Chaudhuri and Hsu 2011] 
Learning model with weakened privacy demands. 
We settle the question of sample complexity: O(VC). 
– Same as non-private learning. 

– Not is this talk. 

 

• Natural connection between Private Learning and 
Sanitization, leads to lower bounds on Sanitization. 
– Not in this talk. 

 



What is Private Learning? 

Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08 

PAC Learning 

Differential Privacy 
+ 

  __________________ 

      Private Learning 
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Related work in Private 

Learning (partial list) 

[BDMN 05] First private learning algorithms. SQ based. 
  

[KLNRS 08] Define private learning, and showed: 
Every class 𝓒 can be privately learned using 𝐥𝐨𝐠 𝓒  labeled 
samples. 
  

[BKN 10] Sample complexity of private learning. 
  

[CH 11] Learning in continuous domain, label privacy. 
  

[CM 08, CMS 11, KST 12]  Machine learning. 
  

[BLR 08, DNRRV 09, …] Synthetic Data. 
  

[DRV 10] Private Boosting. 
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Privately Learning intervals: 

Ideas and Intuition. 



Given a labeled sample, choose 
a concept with small error. 
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Theorem: 
There exists an 𝜖, 𝛿 -private learner for 

𝐈𝐍𝐓𝐄𝐑𝐕𝐀𝐋𝒅 with sample complexity 𝟐𝐥𝐨𝐠∗ 𝒅. 



Summary and Open Problems 

• What we saw: 

Efficient 𝝐, 𝜹 -private learner for 𝐈𝐍𝐓𝐄𝐑𝐕𝐀𝐋𝒅 with low 
sample complexity. 

– This separates the sample complexity of 𝜖, 𝛿 -private and 
𝜖-private learners. 

  

• Other results:   

– Efficient 𝝐, 𝜹 -private for other concept classes with 
even lower sample complexity (independent of the 
domain). 

– Similar results for Data Sanitization. 

 

• Open problem: 

Lower bounds on the sample complexity of 𝝐, 𝜹 -private 
learners? 


