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Often, this algorithmic task can be abstracted as a learning problem:

« Bank is inferested in predicting (based on past customers) whether
new customers are good/bad credit
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Pure Differential Privacy
Dwork, McSherry, Nissim, Smith 2006

Changing one record does not change the output
distribution "too much”

A (rand) algorithm A is € differentially
private if for all neighboring databases S, S
and for all sets of outputs F:

Pr[c/l(Sl) € F] <e‘- Pf[cﬂ(Sz) = F]



Approx. Differential Privacy

Dwork, McSherry, Nissim, Smith 2006
Dwork, Kenthapadi, McSherry, Mironov, Naor 2006

Changing one record does not change the output
distribution "too much”

A (rand) algorithm A is (€, 8) differentially
private if for all neighboring databases S, S
and for all sets of outputs F:

Pr[c/l(Sl) € F] <e‘- Pr[cA(Sz) = F] + 0



Our Results:

« Sample complexity of Private Learning and
Sanitization can be drastically smaller if we settle
for approximate differential privacy.

* Label Privacy [Chaudhuri and Hsu 2011]
Learning model with weakened privacy demands.
We settle the question of sample complexity: O(VC).
— Same as non-private learning.
— Not is this talk.

* Natural connection between Private Learning and
Sanitization, leads to lower bounds on Sanitization.
— Not in this talk.



What is Private Learning?

Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08
Definition:

PAC Learning
" Differential Privacy

Private Learning
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Domain X.
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“PAC’” Model [Valiant 84]

« Domain X.

« Set Cof boolean functions over X.
- for example: INTERVAL,

« Labeled sample.
« Output a classifier h.
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“PAC’” Model [Valiant 84]

Domain X.

Set C of boolean functions over X.
- for example: INTERVAL,

Labeled sample.
Output a classifier h.




Related work in Private
Learning (partial list)

[BDMN 05] First private learning algorithms. SQ based.

[KLNRS 08] Define private learning, and showed:
Every class € can be privately learned using log|C| labeled
samples.

[BKN 10] Sample complexity of private learning.
[CH 11] Learning in continuous domain, label privacy.
[CM 08, CMS 11, KST 12] Machine learning.

[BLR 08, DNRRV 09, ..] Synthetic Data.

[DRV 10] Private Boosting.



Running Example: INTERVAL,

Cj
11 [ ci(x)=1 & x<j J
0
123 .. j .. 2¢
Facts:

* non-private proper learner with 0(1) samples.
* e-private proper learner: @(d) samples [BBKN 10].



Running Example: INTERVAL,

Cj

N

11 [ ) =1 & x<j ]
0

123 .. j .. 2¢

Facts:
* non-private proper learner with 0(1) samples.

* e-private proper learner: @(d) samples [BBKN 10].

We show:
(¢, 8)-private proper learner with 2008”4 samples.



Privately Learning intervals:
Ideas and Intuition.

We show:
(¢, 8)-private proper learner with 2008”4 samples.



The Goal:

Given a labeled sample, choose
a concept with small error.
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Assume we can (privately) obtain an interval G € X s.t.
® Contains "a lot" of ones, and "a lot" of zeroes.

® Every interval I € X of length < |G|/4 either does not

contain "too many" ones or does not contain “too many”
zeroes.
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4-good interval G

Assume we can (privately) obtain an interval G € X s.t.
® Contains "a lot" of ones, and "a lot" of zeroes.

® Every interval I € X of length < |G|/4 either does not

contain "too many" ones or does not contain “too many”
zeroes.

0 4+—t+++—+t+—+t+t++t++t++t+++++ 1+ +++1++1+90— X

G




4-good interval ¢ > done!

® Divide G into 4 equal intervals, and define 5 “equally spread”

concepts in G.

® At least one concept has small error.
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4-good interval ¢ > done!

Divide G into 4 equal intervals, and define 5 “equally spread”
concepts in G.

At least one concept has small error.

Choose one using the Exp. Mechanism [McSherry and Talwar 07]
(requires 0(1) samples).
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4-good interval ¢ > done!

Divide G into 4 equal intervals, and define 5 “equally spread”
concepts in G.

At least one concept has small error.

Choose one using the Exp. Mechanism [McSherry and Talwar 07]
(requires 0(1) samples).

Conclusion: suffices to find a 4-good interval.
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Finding a 4-good interval

Assume we can (privately) obtain a J€ R s.t. there exists a 2-good
interval G of length J.

Divide X into intervals {4;} and {B;} of length 2J, where the
{B;}'s are right-shifted by J.

At least one interval contains G.
Choose an interval using Agis+ [ST 2013] (requires 0(1) samples).

The chosen interval is of length 2|G| — 4-good !

Conclusion: suffices to find a

of a 2-good interval.
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Computing the length J

Easy solution:
» Noisy binary search on 0 < J < 24,
* d noisy comparisons requires d samples.

Better solution:

* Noisy binar?/ search on the power 0 < j <logd of a 2-good
interval of length J=2/.

* logd noisy comparisons requires log d samples.

In the paper:
Use recursion on binary search and significantly reduce the
costs.

~
Theorem:

There exists an (¢, §)-private learner for

| INTERVAL, with sample complexity 2198”4 )




Summary and Open Problems

 What we saw:

Efficient (¢ 6)-private learner for INTERVAL,; with low
sample complexity.

— This separates the sample complexity of (¢, §)-private and
e-private learners.

Other results:

— Efficient (e, 8)-private for other concept classes with
even lower sample complexity (independent of the
domain).

— Similar results for Data Sanitization.

Open problem:

Lower bounds on the sample complexity of (€, §)-private
learners?



