Differential privacy without a central database

Boston Differential Privacy Summer School, 6-10 June 2022

Uri Stemmer

About this course

- The local model
- The shuffle model
- Streaming/online settings
- Differential privacy as a tool

Local Differential Privacy (LDP): Motivation

How can organizations collect high-quality *aggregate* information from their user bases, while guaranteeing that *no individual-specific* information is collected?

Server

How to learn new words?

- Identify common "typos" and add them to dictionary!
- Privacy concerns?

Google, Apple, and Microsoft have been using locally-differentially-private algorithms in the Chrome browser, in iOS-10, and in Windows 10

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

Definition – Local Differential Privacy (simplified)

- ϵ -LDP algorithm accesses every data entry only once, via an ϵ -local randomizer
- ϵ -local randomizer is an algorithm $R: X \to Y$ s.t. $\forall x, x' \in X, \ \forall y \in Y$

 $\Pr[R(x) = y] \le e^{\epsilon} \cdot \Pr[R(x') = y]$

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

Definition – Local Differential Privacy (simplified)

- ϵ -LDP algorithm accesses every data entry only once, via an ϵ -local randomizer
- ϵ -local randomizer is an algorithm $R: X \to Y$ s.t. $\forall x, x' \in X, \ \forall y \in Y$

 $\Pr[R(x) = y] \le e^{\epsilon} \cdot \Pr[R(x') = y]$

[Dwork, McSherry, Nissim, Smith 06], [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08], [Evfimievski, Gehrke, Srikant 03]

In the standard (centralized) model of DP, we trust the analyzer, and provide privacy against any observer to the <u>outcome</u> of the computation. But the analyzer learns everything

Why use LDP?

- Valuable information about users while providing strong privacy and trust guarantees
- Privacy preserved even if the organization is subpoenaed
- Reduces organization liability for securing the data

Challenges

- As every user randomizes her data, accuracy is reduced
- Number of users might be very large (in the millions)
- Optimizing runtime and memory usage becomes crucial

The Local Model of Differential Privacy Today's Outline

- **2.** Computing histograms
 - 3. Computing averages
 - 4. Clustering
 - 5. LDP vs. statistical queries
 - 6. Impossibility result for histograms
 - 7. Interactive LDP protocols

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

* The error of the protocol is the maximal estimation error

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

* The error of the protocol is the maximal estimation error

For example, **X** could be the set of all (reasonably length) URL domains, and for every user **i** we have $x_i =$ homepage address

The goal here would be to estimate the popularity of different homepage addresses

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

* The error of the protocol is the maximal estimation error

In figure:

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

* The error of the protocol is the maximal estimation error

In figure: Want estimations \hat{f}_s s.t. $\max_{x \in X} |\hat{f}_s(x) - f_s(x)|$ is small

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

* The error of the protocol is the maximal estimation error

In figure: Want estimations \hat{f}_s s.t. $\max_{x \in X} |\hat{f}_s(x) - f_s(x)|$ is small

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

* The error of the protocol is the maximal estimation error

In figure: Want estimations \hat{f}_{S} s.t. $\max_{x \in X} |\hat{f}_{S}(x) - f_{S}(x)|$ is small

The server learns that many users hold '17', without knowing which are these users!

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$
 - Arguably the most well-studied problem under LDP, Important subroutine for solving many other problems
 [MS 06], [HKR 12], [EP 14], [BS 15], [QYYKXR 16], [TVVKFSD 17]...
 - **Google** and **Apple** have been using using LDP algorithms for this problem in the **Chrome browser** and in **iOS-10**:
 - QuickType suggestions, Emoji suggestions, Lookup Hints, Energy Draining Domains, Autoplay Intent Detection, Crashing Domains, Health Type Usage

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

Observe: If |X| is large, then efficient algorithms cannot output estimations for every $x \in X$ directly

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

Observe: If |X| is large, then efficient algorithms cannot output estimations for every $x \in X$ directly

Goal 1 – Frequency Oracle:

Frequency oracle is an algorithm that, after communicating with the users, outputs a <u>data</u> <u>structure</u> capable of approximating $f_s(x)$ for every $x \in X$

Goal 2 – Heavy Hitters:

Identify a (short) subset $\mathbf{L} \subseteq \mathbf{X}$ of "heavy-hitters" with estimates for their frequencies (the frequency of every $\mathbf{x} \notin \mathbf{L}$ is estimated as **0**)

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

Observe: If |X| is large, then efficient algorithms cannot output estimations for every $x \in X$ directly

Goal 1 – Frequency Oracle:

Frequency oracle is an algorithm that, after communicating with the users, outputs a <u>data</u> <u>structure</u> capable of approximating $f_s(x)$ for every $x \in X$

Goal 2 – Heavy Hitters:

Identify a (short) subset $\mathbf{L} \subseteq \mathbf{X}$ of "heavy-hitters" with estimates for their frequencies (the frequency of every $x \notin \mathbf{L}$ is estimated as **0**)

- Heavy-hitters is a particular kind of a frequency oracle, so it might be harder to obtain
- Ignoring runtime, the two goals are equivalent
- What's next? (1) Show a reduction from Goal 2 to Goal 1
 (2) Show how to achieve Goal 1

Part 1: Use Oracle to identify Heavy-Hitters

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

<u>Thm</u>: If there is an ε -LDP frequency oracle with error τ then there is an $O(\varepsilon)$ -LDP algorithm for heavy-hitters with error $O(\tau)$ with almost the same runtime, space, and communication complexities

<u>Easier Thm</u>: If there is an efficient ε -LDP frequency oracle with error τ then there is an efficient $\varepsilon \cdot \log |X|$ -LDP algorithm for heavy-hitters with error 2τ

- 1) Let \mathbb{O} be an ε -LDP frequency oracle with error τ
- 2) There are n users where every user $i \in [n]$ holds an input $x_i \in X$. Denote $S = (x_1, ..., x_n)$

- 1) Let \mathbb{O} be an ε -LDP frequency oracle with error τ
- 2) There are n users where every user $i \in [n]$ holds an input $x_i \in X$. Denote $S = (x_1, ..., x_n)$
- 3) Let $h: X \rightarrow [T]$ be a publicly known hash function

Intuition: if h isolates heavy-hitters then suffices to query \mathbb{O} on hash range. But how?

Simplifying assumption: No collisions in *h* for elements in *S*

- 1) Let \mathbb{O} be an ε -LDP frequency oracle with error τ
- 2) There are n users where every user $i \in [n]$ holds an input $x_i \in X$. Denote $S = (x_1, ..., x_n)$
- 3) Let $h: X \to [T]$ be a publicly known hash function

Intuition: if h isolates heavy-hitters then suffices to query \mathbb{O} on hash range. But how?

Simplifying assumption: No collisions in *h* for elements in *S*

Fix a "heavy-hitter" x^* satisfying $f_S(x^*) > 2\tau$, and denote $t^* = h(x^*)$ % We want to identify x^*

- 1) Let \mathbb{O} be an ε -LDP frequency oracle with error τ
- 2) There are n users where every user $i \in [n]$ holds an input $x_i \in X$. Denote $S = (x_1, ..., x_n)$
- 3) Let $h: X \to [T]$ be a publicly known hash function Intuition: if h isolates heavy-hitters then suffices to query \mathbb{O} on hash range. But how?

Simplifying assumption: No collisions in h for elements in S

Fix a "heavy-hitter" x^* satisfying $f_S(x^*) > 2\tau$, and denote $t^* = h(x^*)$ % We want to identify x^*

For $\ell \in [\log|X|]$ define $S_{\ell} = (h(x_i), x_i[\ell])_{i \in [n]}$, where $x_i[\ell] = \text{bit } \ell$ of x_i % Users compute rows locally

- 1) Let \mathbb{O} be an ε -LDP frequency oracle with error τ
- 2) There are n users where every user $i \in [n]$ holds an input $x_i \in X$. Denote $S = (x_1, ..., x_n)$
- 3) Let $h: X \to [T]$ be a publicly known hash function Intuition: if h isolates heavy-hitters then suffices to query \mathbb{O} on hash range. But how?

Simplifying assumption: No collisions in h for elements in S

Fix a "heavy-hitter" x^* satisfying $f_S(x^*) > 2\tau$, and denote $t^* = h(x^*)$ % We want to identify x^*

For $\ell \in [\log|X|]$ define $S_{\ell} = (h(x_i), x_i[\ell])_{i \in [n]}$, where $x_i[\ell] = \text{bit } \ell$ of x_i % Users compute rows locally

- x^* is "heavy", hence $(t^*, x^*[\ell])$ appears $> 2\tau$ in S_ℓ for every ℓ
- No collisions, hence $(t^*, 1 x^*[\ell])$ appears **0** times in S_ℓ
- \Rightarrow Can identify every bit ℓ of x^* by querying $\mathbb{O}(S_{\ell})$ on $(t^*, 0)$ and $(t^*, 1)$

- 1) Let \mathbb{O} be an ε -LDP frequency oracle with error τ
- 2) There are n users where every user $i \in [n]$ holds an input $x_i \in X$. Denote $S = (x_1, ..., x_n)$
- 3) Let $h: X \to [T]$ be a publicly known hash function Intuition: if h isolates heavy-hitters then suffices to query \mathbb{O} on hash range. But how?

Simplifying assumption: No collisions in h for elements in S

Fix a "heavy-hitter" x^* satisfying $f_S(x^*) > 2\tau$, and denote $t^* = h(x^*)$ % We want to identify x^*

For $\ell \in [\log|X|]$ define $S_{\ell} = (h(x_i), x_i[\ell])_{i \in [n]}$, where $x_i[\ell] = \text{bit } \ell$ of x_i % Users compute rows locally

- x^* is "heavy", hence $(t^*, x^*[\ell])$ appears $> 2\tau$ in S_ℓ for every ℓ
- No collisions, hence $(t^*, 1 x^*[\ell])$ appears **0** times in S_ℓ
- \Rightarrow Can identify every bit ℓ of x^* by querying $\mathbb{O}(S_\ell)$ on $(t^*, 0)$ and $(t^*, 1)$

<u>The Protocol</u>: For every $t \in [T]$ construct $\hat{x}^{(t)}$ as follows: $\forall \ell \in [\log|X|]$ query $\mathbb{O}(S_{\ell})$ on (t, 0) and (t, 1) and set $\hat{x}^{(t)}[\ell] \leftarrow \operatorname{argmax}$

By purple, $\widehat{x}^{(t^*)} = x^*$ is identified

- The algorithm returns a list of size T containing all elements x with $f_s(x) \ge 2\tau$
- For our simplifying assumption, suffices to take $T \ge n^2$
- \Rightarrow Total runtime $\approx n^2$ times the response time of \mathbb{O} (can do better)
- What about privacy? We had $\log |X|$ executions of \mathbb{O}
- \Rightarrow Overall $\varepsilon \cdot \log |X|$ -DP by composition

Simplifying assumption: No collisions in *h* for elements in *S*

Fix a "heavy-hitter" x^* satisfying $f_S(x^*) > 2\tau$, and denote $t^* = h(x^*)$ % We want to identify x^*

For $\ell \in [\log|X|]$ define $S_{\ell} = (h(x_i), x_i[\ell])_{i \in [n]}$, where $x_i[\ell] = \text{bit } \ell$ of x_i % Users compute rows locally

- x^* is "heavy", hence $(t^*, x^*[\ell])$ appears $> 2\tau$ in S_ℓ for every ℓ
- No collisions, hence $(t^*, 1 x^*[\ell])$ appears **0** times in S_ℓ
- \Rightarrow Can identify every bit ℓ of x^* by querying $\mathbb{O}(S_{\ell})$ on $(t^*, 0)$ and $(t^*, 1)$

<u>The Protocol</u>: For every $t \in [T]$ construct $\hat{x}^{(t)}$ as follows: $\forall \ell \in [\log|X|]$ query $\mathbb{O}(S_{\ell})$ on (t, 0) and (t, 1) and set $\hat{x}^{(t)}[\ell] \leftarrow \operatorname{argmax}$

By purple, $\widehat{x}^{(t^*)} = x^*$ is identified

NEXT GO&L: DESIGN & FREQUENCY OR&CLE

STEP BACK: How can LDP be useful at all?

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_S(1)$

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_s(1)$

Local randomizer – randomized response R(x): Return x w.p. $\approx \frac{1}{2} + \epsilon$ (and -x otherwise) [Warner 1965]

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_s(1)$

Local randomizer – randomized response R(x): Return x w.p. $\approx \frac{1}{2} + \epsilon$ (and -x otherwise) [Warner 1965]

Observe: Any output (± 1) is almost as equally likely to result from any input (± 1)

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_s(1)$

Local randomizer – randomized response R(x): [Warner 1965] Return x w.p. $\approx \frac{1}{2} + \epsilon$ (and -x otherwise)

Observe: Any output (± 1) is almost as equally likely to result from any input (± 1)

Protocol: From every user *i* obtain $y_i \leftarrow R(x_i)$. Return $\frac{1}{4\epsilon} (2\epsilon n + \sum_i y_i)$

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_s(1)$

Local randomizer – randomized response R(x):[Warner 1965]Return x w.p. $\approx \frac{1}{2} + \epsilon$ (and -x otherwise)

Observe: Any output (± 1) is almost as equally likely to result from any input (± 1)

Protocol: From every user *i* obtain $y_i \leftarrow R(x_i)$. Return $\frac{1}{4\epsilon} (2\epsilon n + \sum_i y_i)$

Analysis:

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_s(1)$

Local randomizer – randomized response R(x): Return x w.p. $\approx \frac{1}{2} + \epsilon$ (and -x otherwise) [Warner 1965]

Observe: Any output (± 1) is almost as equally likely to result from any input (± 1)

Protocol: From every user *i* obtain $y_i \leftarrow R(x_i)$. Return $\frac{1}{4\epsilon} (2\epsilon n + \sum_i y_i)$ Analysis: $\mathbb{E}[\sum_i y_i] = \sum_{i:x_i=1} \mathbb{E}[y_i] + \sum_{i:x_i=-1} \mathbb{E}[y_i] = (-1) \cdot (\frac{1}{2} + \epsilon) + 1 \cdot (\frac{1}{2} - \epsilon) = -2\epsilon$

$$= f_{\mathcal{S}}(1) \cdot 2\epsilon - f_{\mathcal{S}}(-1) \cdot 2\epsilon = f_{\mathcal{S}}(1) \cdot 4\epsilon - n \cdot 2\epsilon$$

Hoeffding: w.h.p., estimation error at most $\approx \frac{1}{\epsilon}\sqrt{n}$

- Distributed database $S = (x_1, ..., x_n) \in \{\pm 1\}^n$, each user holds a bit
- Goal: Estimate number of ones, denoted $f_s(1)$

Local randomizer – randomized response R(x): [Warner 1965] Return x w.p. $\approx \frac{1}{2} + \epsilon$ (and -x otherwise)

Observe: Any output (± 1) is almost as equally likely to result from any input (± 1)

Protocol: From every user *i* obtain $y_i \leftarrow R(x_i)$. Return $\frac{1}{4\epsilon} (2\epsilon n + \sum_i y_i)$ Analysis: $\mathbb{E}[\sum_i y_i] = \sum_{i:x_i=1} \mathbb{E}[y_i] + \sum_{i:x_i=-1} \mathbb{E}[y_i] = (-1) \cdot (\frac{1}{2} + \epsilon) + 1 \cdot (\frac{1}{2} - \epsilon) = -2\epsilon$

$$= f_{\mathcal{S}}(1) \cdot 2\epsilon - f_{\mathcal{S}}(-1) \cdot 2\epsilon = f_{\mathcal{S}}(1) \cdot 4\epsilon - n \cdot 2\epsilon$$

Hoeffding: w.h.p., estimation error at most $\approx \frac{1}{\epsilon}\sqrt{n}$

Takeaway: Counting bits under LDP is easy

GENERAL CASE:

Frequency Oracle for a large domain X

General Case: Oracle for a large domain X

Setting:

- Every user i holds a value $x_i \in X$
- Public uniform matrix $Z \in \{\pm 1\}^{|X| \times n}$ $\forall i \in [n]$ and $\forall x \in X$ we have a bit Z[x, i]
- User *i* identifies corresponding bit $Z[x_i, i]$

Setting:

- Every user i holds a value $x_i \in X$
- Public uniform matrix $Z \in \{\pm 1\}^{|X| \times n}$ $\forall i \in [n]$ and $\forall x \in X$ we have a bit Z[x, i]
- User i identifies corresponding bit $Z[x_i, i]$

User *i* sends $y_i = Z[x_i, i]$ w.p. $\approx \frac{1}{2} + \epsilon$ $y_i = -Z[x_i, i]$ w.p. $\approx \frac{1}{2} - \epsilon$

Setting:

- Every user i holds a value $x_i \in X$
- Public uniform matrix $Z \in \{\pm 1\}^{|X| \times n}$ $\forall i \in [n]$ and $\forall x \in X$ we have a bit Z[x, i]
- User *i* identifies corresponding bit $Z[x_i, i]$

User *i* sends $y_i = Z[x_i, i]$ w.p. $\approx \frac{1}{2} + \epsilon$ $y_i = -Z[x_i, i]$ w.p. $\approx \frac{1}{2} - \epsilon$

Server: Given a query $x \in X$, return $\hat{f}(x) = \frac{1}{2\epsilon} \sum_{i \in [n]} y_i \cdot Z[x, i]$

Setting:

- Every user i holds a value $x_i \in X$
- Public uniform matrix $Z \in \{\pm 1\}^{|X| \times n}$ $\forall i \in [n]$ and $\forall x \in X$ we have a bit Z[x, i]
- User *i* identifies corresponding bit $Z[x_i, i]$

Users randomize their corresponding bits: User *i* sends $y_i = Z[x_i, i]$ w.p. $\approx \frac{1}{2} + \epsilon$ $y_i = -Z[x_i, i]$ w.p. $\approx \frac{1}{2} - \epsilon$

Server: Given a query $x \in X$, return $\hat{f}(x) = \frac{1}{2\epsilon} \sum_{i \in [n]} y_i \cdot Z[x, i]$

Setting:

- Every user i holds a value $x_i \in X$
- Public uniform matrix $Z \in \{\pm 1\}^{|X| \times n}$ $\forall i \in [n]$ and $\forall x \in X$ we have a bit Z[x, i]
- User *i* identifies corresponding bit $Z[x_i, i]$

User *i* sends $y_i = Z[x_i, i]$ w.p. $\approx \frac{1}{2} + \epsilon$ $y_i = -Z[x_i, i]$ w.p. $\approx \frac{1}{2} - \epsilon$

Server: Given a query $x \in X$, return $\hat{f}(x) = \frac{1}{2\epsilon} \sum_{i \in [n]} y_i \cdot Z[x, i]$

$$\mathbb{E}\left[\sum_{i\in[n]} y_i \cdot Z[x,i]\right] = \sum_{i:x_i=x} \mathbb{E}\left[y_i \cdot Z[x,i]\right] + \sum_{i:x_i\neq x} \mathbb{E}\left[y_i \cdot Z[x,i]\right] = 2\epsilon \cdot f_S(x)$$

Hoeffding bound: w.h.p. our estimation error is at most $\approx \frac{1}{\epsilon} \sqrt{n \cdot \log|X|}$

- **3.** Computing averages
 - 4. Clustering
 - 5. LDP vs. statistical queries
 - 6. Impossibility result for histograms
 - 7. Interactive LDP protocols

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}$
- **Goal:** Estimate the average of **S**

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}$
- **Goal:** Estimate the average of **S**

For example, maybe the inputs are salaries, and our goal is to learn the average salary

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}$
- **Goal:** Estimate the average of **S**

Local randomizer R(x):

Return *x* + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise "hides" the information of every single individual, and that this randomizer satisfied the definition of LDP

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}$
- **Goal:** Estimate the average of **S**

Local randomizer R(x):

Return *x* + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise "hides" the information of every single individual, and that this randomizer satisfied the definition of LDP

Protocol: From every user *i* obtain
$$y_i \leftarrow R(x_i)$$
. Return $\frac{1}{n} \cdot \sum_i y_i$

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}$
- **Goal:** Estimate the average of **S**

Local randomizer R(x):

Return *x* + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise "hides" the information of every single individual, and that this randomizer satisfied the definition of LDP

Protocol: From every user *i* obtain
$$y_i \leftarrow R(x_i)$$
. Return $\frac{1}{n} \cdot \sum_i y_i$

Analysis:
$$\mathbb{E}\left[\frac{1}{n} \cdot \sum_{i} y_{i}\right] = \frac{1}{n} \cdot \sum_{i} x_{i} + \mathbb{E}\left[\frac{1}{n} \cdot \sum_{i} \text{Noise}_{i}\right] = \frac{1}{n} \cdot \sum_{i} x_{i}$$

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}$
- **Goal:** Estimate the average of **S**

Local randomizer R(x):

Return *x* + random Gaussian noise (appropriately calibrated)

It can be shown that appropriately calibrated noise "hides" the information of every single individual, and that this randomizer satisfied the definition of LDP

Protocol: From every user *i* obtain $y_i \leftarrow R(x_i)$. Return $\frac{1}{n} \cdot \sum_i y_i$

Analysis:
$$\mathbb{E}\left[\frac{1}{n} \cdot \sum_{i} y_{i}\right] = \frac{1}{n} \cdot \sum_{i} x_{i} + \mathbb{E}\left[\frac{1}{n} \cdot \sum_{i} \text{Noise}_{i}\right] = \frac{1}{n} \cdot \sum_{i} x_{i}$$

- Error scales with $1/\sqrt{n}$
- Can be extended to averages in *d*-dimensions

Takeaway: We can compute averages under LDP

- 1. What is the model?
- **2.** Computing histograms
 - 3. Computing averages
- - 5. LDP vs. statistical queries
 - 6. Impossibility result for histograms
 - 7. Interactive LDP protocols
 - 8. A related model

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}^d$
- Find: Center for a ball of minimal radius enclosing at least *t* input points

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}^d$
- Find: Center for a ball of minimal radius enclosing at least *t* input points

- Distributed database $S = (x_1, ..., x_n)$, each user holds a point $x_i \in \mathbb{R}^d$
- Find: Center for a ball of minimal radius enclosing at least *t* input points

Applications:

- ✓ Outlier removal
- Building block for more complex algorithms

Useful Tool: Locality-Sensitive Hashing (LSH) [Indyk&Motwani]

- Maximize the probability of collision for similar items
- Minimize the probability of collision for dissimilar items

Useful Tool: Locality-Sensitive Hashing (LSH) [Indyk&Motwani]

- Maximize the probability of collision for similar items
- Minimize the probability of collision for dissimilar items

Intuitive Overview

- 1. Identify "heavy" buckets in the hash range, using LDP tool for histograms
- 2. Identified buckets isolate clustered points
- 3. Clustered points can be averaged under LDP to obtain an approximate cluster center

m

ns

[Indyk&Motwani]

Intuitive Overview

- Identify "heavy" buckets in the hash range, using LDP 1. tool for histograms
- Identified buckets isolate clustered points 2.

Clustered points can be averaged under LDP to obtain 3. an approximate cluster center

m

[Indyk&Motwani]

- 6. Impossibility result for histograms
- 7. Interactive LDP protocols

- 6. Impossibility result for histograms
- 7. Interactive LDP protocols

Other problems that people have looked at:

- Convex optimization [FGV'17], [STU'17], [FMTT'18], [WGSX'20]
- Hypothesis testing [Sheffet'18], [GR'18], [JMNR'19]
- Hypothesis selection [GKKNWZ'20]
- Answering Queries [Bassily'19], [CKS'19]
- Reinforcement Learning [RZLS'20], [ZCHLW'20], [TWZW'21]
- Continual monitoring under LDP [EPK'14], [JRUW'18], [BY'21]

- 6. Impossibility result for histograms
- 7. Interactive LDP protocols

- 6. Impossibility result for histograms
- 7. Interactive LDP protocols

- Let \mathfrak{D} be an unknown distribution over a domain X
- Consider a data analyst who wants to learn properties of \mathfrak{D}
- The analyst interacts with \mathfrak{D} via *statistical queries*:

In each step, the analyst specifies a predicate $p: X \to \{0, 1\}$ and obtains an estimate for $\mathbb{E}_{x \sim \mathfrak{D}}[p(x)]$

Unknown dist. \mathfrak{D} over domain X

- Let \mathfrak{D} be an unknown distribution over a domain X
- Consider a data analyst who wants to learn properties of ${\mathfrak D}$
- The analyst interacts with \mathfrak{D} via *statistical queries*:

In each step, the analyst specifies a predicate $p: X \to \{0, 1\}$ and obtains an estimate for $\mathbb{E}_{x \sim \mathfrak{D}}[p(x)]$

- Let \mathfrak{D} be an unknown distribution over a domain X
- Consider a data analyst who wants to learn properties of \mathfrak{D}
- The analyst interacts with \mathfrak{D} via *statistical queries*:

In each step, the analyst specifies a predicate $p: X \to \{0, 1\}$ and obtains an estimate for $\mathbb{E}_{x \sim \mathfrak{D}}[p(x)]$

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn in the LDP model (where every user holds a point sampled from \mathfrak{D})

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn in the LDP model (where every user holds a point sampled from \mathfrak{D})

Easy direction of equivalence:

Every statistical query p can be answered under LDP by estimating the number of users i s.t. $p(x_i) = 1$

Theorem [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]

What you can learn in the SQ model is exactly what you can learn in the LDP model (where every user holds a point sampled from \mathfrak{D})

Easy direction of equivalence:

Every statistical query p can be answered under LDP by estimating the number of users i s.t. $p(x_i) = 1$

The great news: The SQ model is well-studied and known to be very expressive. All the existing SQ algorithms can be implemented under LDP!

The great impossibility news*: What cannot be done in the SQ model cannot be done under LDP, e.g., learning PARITY

7. Interactive LDP protocols

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

Theorem: Under LDP, must have error
$$\Omega\left(\frac{1}{\varepsilon}\sqrt{n \cdot \log|X|}\right)$$

[Chan Shi Song] [Bassily Smith]

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

<u>Theorem</u>: Under LDP, must have error $\Omega\left(\frac{1}{\epsilon}\sqrt{n \cdot \log|X|}\right)$

[Chan Shi Song] [Bassily Smith]

<u>Proof idea</u>: $\Omega(\sqrt{n})$ for estimating the multiplicity of 1 in the database

• Let $S = (x_1, ..., x_n) \in \{0, 1\}^n$ be chosen uniformly at random

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

<u>Theorem</u>: Under LDP, must have error $\Omega\left(\frac{1}{\varepsilon}\sqrt{n \cdot \log|X|}\right)$

[Chan Shi Song] [Bassily Smith]

<u>Proof idea</u>: $\Omega(\sqrt{n})$ for estimating the multiplicity of 1 in the database

- Let $S = (x_1, ..., x_n) \in \{0, 1\}^n$ be chosen uniformly at random
- Let *T* denote the transcript. Main observation: inputs remain roughly uniform given the transcript
- Specifically, for every t and i we have: $\Pr[x_i = 1 | T = t] \approx \frac{1}{2} \approx \Pr[x_i = 0 | T = t]$

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

<u>Theorem</u>: Under LDP, must have error $\Omega\left(\frac{1}{\varepsilon}\sqrt{n \cdot \log|X|}\right)$

[Chan Shi Song] [Bassily Smith]

<u>Proof idea</u>: $\Omega(\sqrt{n})$ for estimating the multiplicity of 1 in the database

- Let $S = (x_1, ..., x_n) \in \{0, 1\}^n$ be chosen uniformly at random
- Let *T* denote the transcript. Main observation: inputs remain roughly uniform given the transcript
- Specifically, for every t and i we have: $\Pr[x_i = 1 | T = t] \approx \frac{1}{2} \approx \Pr[x_i = 0 | T = t]$

$$\Pr[x_i = 1 | T = t] = \Pr[T = t | x_i = 1] \cdot \frac{\Pr[x_i = 1]}{\Pr[T = t]} \approx \Pr[T = t | x_i = 0] \cdot \frac{\Pr[x_i = 0]}{\Pr[T = t]} = \Pr[x_i = 0 | T = t]$$

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

<u>Theorem</u>: Under LDP, must have error $\Omega\left(\frac{1}{\varepsilon}\sqrt{n \cdot \log|X|}\right)$

[Chan Shi Song] [Bassily Smith]

<u>Proof idea</u>: $\Omega(\sqrt{n})$ for estimating the multiplicity of 1 in the database

- Let $S = (x_1, ..., x_n) \in \{0, 1\}^n$ be chosen uniformly at random
- Let *T* denote the transcript. Main observation: inputs remain roughly uniform given the transcript
- Specifically, for every t and i we have: $\Pr[x_i = 1 | T = t] \approx \frac{1}{2} \approx \Pr[x_i = 0 | T = t]$

$$\Pr[x_i = 1 | T = t] = \Pr[T = t | x_i = 1] \cdot \frac{\Pr[x_i = 1]}{\Pr[T = t]} \approx \Pr[T = t | x_i = 0] \cdot \frac{\Pr[x_i = 0]}{\Pr[T = t]} = \Pr[x_i = 0 | T = t]$$

So, conditioned on the transcript, $\sum x_i$ is the sum of n nearly uniform bits (and they remain independent). By anti-Chernoff, the error is $\Omega(\sqrt{n})$

- Distributed database $S = (x_1, ..., x_n) \in X^n$, where user *i* holds $x_i \in X$
- Goal: For every $x \in X$, estimate the multiplicity of x in S, denoted $f_S(x)$

Theorem: Under LDP, must have error
$$\Omega\left(\frac{1}{\varepsilon}\sqrt{n \cdot \log|X|}\right)$$

[Chan Shi Song] [Bassily Smith]

Sidea: $\Omega(\sqrt{n})$ for estimating the multiplicity of 1 in the database This should be contrasted with the centralized model, where the error does not scale with \sqrt{n} • Specifically, for every t and t a independent). By anti-Chernoff, the error is $\Omega(\sqrt{n})$
The Local Model of Differential Privacy Today's Outline

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once

- Non-interactive protocols prepare all the \mathcal{R}_i 's before receiving any messages
- Semi-interactive protocols can interact with every user at most once
- Fully-interactive protocols are unrestricted.

Separating non- from semi-interactive LDP:

- Masked PARITY [Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08]
- Learning halfspaces [Daniely, Feldman 19]

Separating semi- from fully-interactive LDP:

- Hidden layers problem [Joseph, Mao, Roth 20]
- Pointer chasing [Joseph, Mao, Roth 20]

- Distributed database $S = (x_1, ..., x_n)$, where:
 - Every user $1 \le i < n/2$ holds input $x_i \in \{1, 2, ..., L\}$
 - Every user $n/2 \le j \le n$ holds input $x_j = (x_j[1], ..., x_j[L]) \in \{0, 1\}^L$

• Goal: If $x_1 = x_2 = \cdots = x_{n/2} = \ell$, then estimate the average $\frac{2}{n} \sum_{j=n/2}^n x_j[\ell]$

- Distributed database $S = (x_1, ..., x_n)$, where:
 - Every user $1 \le i < n/2$ holds input $x_i \in \{1, 2, ..., L\}$
 - Every user $n/2 \le j \le n$ holds input $x_j = (x_j[1], ..., x_j[L]) \in \{0, 1\}^L$

• Goal: If $x_1 = x_2 = \cdots = x_{n/2} = \ell$, then estimate the average $\frac{2}{n} \sum_{j=n/2}^n x_j[\ell]$

<u>Observation</u>: Can solve easily under LDP with two rounds (provided that $n \gtrsim \frac{1}{\epsilon} \log L$):

- Distributed database $S = (x_1, ..., x_n)$, where:
 - Every user $1 \le i < n/2$ holds input $x_i \in \{1, 2, ..., L\}$
 - Every user $n/2 \le j \le n$ holds input $x_j = (x_j[1], ..., x_j[L]) \in \{0, 1\}^L$

• Goal: If $x_1 = x_2 = \cdots = x_{n/2} = \ell$, then estimate the average $\frac{2}{n} \sum_{j=n/2}^n x_j[\ell]$

<u>Observation</u>: Can solve easily under LDP with two rounds (provided that $n \gtrsim \frac{1}{c} \log L$):

- First run an LDP protocol for histograms over users $1 \le i < \frac{n}{2}$ to identify ℓ (if exists)
- Then run an LDP averaging protocol over the ℓ th coordinate of users $\frac{n}{2} \le i \le n$

- Distributed database $S = (x_1, ..., x_n)$, where:
 - Every user $1 \le i < n/2$ holds input $x_i \in \{1, 2, ..., L\}$
 - Every user $n/2 \le j \le n$ holds input $x_j = (x_j[1], ..., x_j[L]) \in \{0, 1\}^L$

• Goal: If $x_1 = x_2 = \cdots = x_{n/2} = \ell$, then estimate the average $\frac{2}{n} \sum_{j=n/2}^n x_j[\ell]$

<u>Observation</u>: Can solve easily under LDP with two rounds (provided that $n \gtrsim \frac{1}{c} \log L$):

- First run an LDP protocol for histograms over users $1 \le i < \frac{n}{2}$ to identify ℓ (if exists)
- Then run an LDP averaging protocol over the ℓ th coordinate of users $\frac{n}{2} \le i \le n$

Theorem: Cannot solve under LDP with one round (unless *n* is MUCH larger)

- Distributed database $S = (x_1, ..., x_n)$, where:
 - Every user $1 \le i < n/2$ holds input $x_i \in \{1, 2, ..., L\}$
 - Every user $n/2 \le j \le n$ holds input $x_j = (x_j[1], ..., x_j[L]) \in \{0, 1\}^L$

• Goal: If $x_1 = x_2 = \cdots = x_{n/2} = \ell$, then estimate the average $\frac{2}{n} \sum_{j=n/2}^n x_j[\ell]$

<u>Observation</u>: Can solve easily under LDP with two rounds (provided that $n \gtrsim \frac{1}{c} \log L$):

- First run an LDP protocol for histograms over users $1 \le i < \frac{n}{2}$ to identify ℓ (if exists)
- Then run an LDP averaging protocol over the ℓ th coordinate of users $\frac{n}{2} \le i \le n$

<u>Theorem</u>: Cannot solve under LDP with one round (unless *n* is MUCH larger)

Proof idea: If there is a non-interactive LDP protocol Π for this problem, then there is an LDP protocol for computing the averages of **all** *L* coordinates of the x_j 's, which cannot exist.

- Distributed database $S = (x_1, ..., x_n)$, where:
 - Every user $1 \le i < n/2$ holds input $x_i \in \{1, 2, ..., L\}$
 - Every user $n/2 \le j \le n$ holds input $x_j = (x_j[1], ..., x_j[L]) \in \{0, 1\}^L$

• Goal: If $x_1 = x_2 = \cdots = x_{n/2} = \ell$, then estimate the average $\frac{2}{n} \sum_{j=n/2}^n x_j[\ell]$

<u>Observation</u>: Can solve easily under LDP with two rounds (provided that $n \gtrsim \frac{1}{c} \log L$):

- First run an LDP protocol for histograms over users $1 \le i < \frac{n}{2}$ to identify ℓ (if exists)
- Then run an LDP averaging protocol over the ℓ th coordinate of users $\frac{n}{2} \le i \le n$

Theorem: Cannot solve under LDP with one round (unless *n* is MUCH larger)

<u>**Proof idea:**</u> If there is a non-interactive LDP protocol Π for this problem, then there is an LDP protocol for computing the averages of **all** *L* coordinates of the x_j 's, which cannot exist.

The protocol:

(1) Execute Π on the x_j 's and obtain their messages. (2) For every $1 \le \ell \le L$, simulate the x_i users in Π on input $x_i = \ell$, to obtain estimation for the ℓ th oordinate

The Local Model of Differential Privacy Today's Outline

- LDP provides strong privacy and trust guarantees:
 - ✓ No individual information is being collected
 - Privacy preserved even if the organization is subpoenaed
- Many tasks are compatible with LDP:
 - ✓ Histograms, Averages, Clustering, ...
- Accuracy is generally reduced compared to the centralized model

