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About this course

• The local model
• The shuffle model
• Streaming/online settings
• Differential privacy as a tool
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The natural question: 
Can we get the best of 

both worlds? 



The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction
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• Alice and Bob wants to decide whether or not to get married
• Bob doesn’t know what Alice wants, and if she says no he will be embarrassed
• Same with Alice

Goal: Design a process in which Alice and Bob learn if there is mutual love, and nothing else

Notice: If Alice loves Bob then at the end of the process she learns whether Bob loves her or 
not. We want that if Alice does not love Bob, then at the end of the process she will not learn 
Bob’s answer
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• A coin
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What we are going to do:
• Alice and bob will “shuffle” the cards on the table

(the cards are faced down on the table)
• At the and of the process they will learn if there is mutual love
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Here’s what we’ll need:
• A coin
• 6 cards with ones and zeroes:

What we are going to do:
• Alice and bob will “shuffle” the cards on the table

(the cards are faced down on the table)
• At the and of the process they will learn if there is mutual love

Notations:                       ⟹ Encode the answer “no”

⟹ Encode the answer “yes”

10

10 10 10

01
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Let’s define a “random swap” operation:
• Begin with 6 cards:

• Toss a coin
• Heads we change nothing
• Tails we swap:

EC DB

BF AE

A F

CD

This question makes sense also without DP (and has been studied way before DP…):

Secure Multiparty Computation (MPC)          [Yao] [Goldreich, Micali, Wigderson]

Example: The Wedding Problem
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if “yes”
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open
if “yes”
if “no”

Change order

Alice does a Random swap

• If Alice is a “no” then Bob’s cards are never opened, and Alice learns 
nothing

• In Bob’s eyes, Alice’s cards are randomly swapped. If Bob is a “no” 
then the other 4 cards are 0101 so it doesn’t matter what we open 
and Bob learns nothing

• This is a simple example for secure 2-party computation for the 
function AND



Secure Multiparty Computation (MPC)

• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more
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• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

• Informally, a protocol for 𝑓 is secure if it emulates the ideal world in the sense that any adversary (controlling 
a subset of the parties) cannot learn anything more than what it can learn in the ideal world

• Many different settings: How many parties can the adversary control? Adaptive vs static corruptions? Semi-
honest vs malicious? Poly-time or computationally unbounded adversary? Communication network?
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• Let 𝑓: 𝑋𝑛 → 𝑌 be an 𝑛-input function (possibly randomized)
• 𝑛 players 𝑃1, … , 𝑃𝑛 holding inputs 𝑥1, … , 𝑥𝑛
• The players want to compute 𝑓 𝑥1, … , 𝑥𝑛 without revealing anything more

• Informally, a protocol for 𝑓 is secure if it emulates the ideal world in the sense that any adversary (controlling 
a subset of the parties) cannot learn anything more than what it can learn in the ideal world

• Many different settings: How many parties can the adversary control? Adaptive vs static corruptions? Semi-
honest vs malicious? Poly-time or computationally unbounded adversary? Communication network?

Informal theorem: Secure multiparty can be achieved for any function 𝑓 assuming less than a third of the 
parties can be corrupted  [Goldreich, Micali, Wigderson 87]  [Ben-Or, Goldwasser, Wigderson 88]

Remark : This only means that we know HOW to compute 𝑓,
Not that it is necessarily a good idea in terms of privacy…
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Applying MPC to a 
DP functionality 𝑓 in 

the centralized 
model, we get
a protocol for 
computing 𝑓

without a trusted 
entity!

The downside is that generic 
MPC constructions are generally 
quite complex, requiring several 
rounds of communication with 
large overhead
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Definition:

• There are 𝒏 users and a server
• Each user 𝒊 holds an input 𝒙𝒊 ∈ 𝑿
• Each user 𝒊 runs (locally) a randomization algorithm 𝑹 to obtain ℓ

messages: 𝒎𝒊,𝟏, … ,𝒎𝒊,ℓ ← 𝑹 𝒙𝒊
• The users submit these messages to a special communication channel 

called shuffle
• At the outcome of the shuffle we get a random permutation of the 𝒏ℓ

messages, denoted as  𝐒𝐡𝐮𝐟𝐟𝐥𝐞 𝒎𝟏,𝟏, … ,𝒎𝟏,ℓ, … ,𝒎𝒏,𝟏, … ,𝒎𝒏,ℓ

• The server post-processes the outcome of the shuffle
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• The server post-processes the outcome of the shuffle

Privacy requirement at the outcome of the shuffle: 

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have 

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿
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Privacy requirement at the outcome of the shuffle: 

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have 

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛
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Simple observations: (1) Shuffle model is no stronger than the centralized 
model since the curator can simulate it; (2) LDP is no stronger than shuffle
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Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
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(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿
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[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]



Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
1

% Recall the Ω
𝑛

error in the local model

% We show only ≈
1
log

1

𝛿
and assume for simplicity that 𝑛 ≫

1
2 ln

1

𝛿

Utility analysis:

• First observe  σ𝑖=1
2𝑛 𝑏𝑖 = σ𝑖=1

𝑛 𝑥𝑖 + σ𝑖=1
𝑛 𝑦𝑖 ≔ σ𝑖=1

𝑛 𝑥𝑖 + 𝑍

• Now, by the Chernoff bound, with high probability we have  𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝

• Which gives us an error of roughly  
1
log

1

𝛿

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿
2⋅𝑛

(2) Return 𝑚1 = 𝑥 ,   𝑚2 = 𝑦

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]



Counting bits in the shuffle model

Theorem: Can count bits with error 𝑂
1

% Recall the Ω
𝑛

error in the local model

% We show only ≈
1
log

1

𝛿
and assume for simplicity that 𝑛 ≫

1
2 ln

1

𝛿

Utility analysis:

• First observe  σ𝑖=1
2𝑛 𝑏𝑖 = σ𝑖=1

𝑛 𝑥𝑖 + σ𝑖=1
𝑛 𝑦𝑖 ≔ σ𝑖=1

𝑛 𝑥𝑖 + 𝑍

• Now, by the Chernoff bound, with high probability we have  𝑍 ≈ 𝑛𝑝 ± 𝑛𝑝

• Which gives us an error of roughly  
1
log

1

𝛿

Privacy Analysis:

• Suffices to show that the sum 𝐵 ≔ σ𝑖=1
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by this (random permutation of 𝐵 ones and 2𝑛 − 𝐵 zeroes)

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1

(1) Sample 𝑦 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿
2⋅𝑛

(2) Return 𝑚1 = 𝑥 ,   𝑚2 = 𝑦

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

[Cheu, Smith, Ullman, Zeber, Zhilyaev 2019]



Counting bits - privacy analysis continued

Algorithm 𝑹 (on the users’ side): Input 𝑥 ∈ 0,1
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Now let 𝑿 be a dataset with 𝒕 ones, let 𝑿′ be a neighboring dataset with 𝒕 + 𝟏 ones, and let 𝑭 ⊆ ℕ

Denote 𝐹−𝑡 = 𝑓 − 𝑡 ∶ 𝑓 ∈ 𝐹 . We have,

Pr
𝐵 ∈ 𝐹
run on 𝑋

= Pr 𝑡 + 𝑍 ∈ 𝐹 = Pr 𝑍 ∈ 𝐹−𝑡 = Pr 𝑍 ∈ 𝐹−𝑡 ∩ 𝐼Good + Pr 𝑍 ∈ 𝐹−𝑡 ∖ 𝐼Good

≤ Pr 𝑍 ∈ 𝐹−𝑡 ∩ 𝐼Good + 𝛿 ≤ 𝑒 ⋅ Pr 𝑍 + 1 ∈ 𝐹−𝑡 ∩ 𝐼Good + 𝛿

≤ 𝑒 ⋅ Pr 𝑍 + 1 ∈ 𝐹−𝑡 + 𝛿 = 𝑒 ⋅ Pr 𝑍 + 1 + 𝑡 ∈ 𝐹 + 𝛿 ≤ 𝑒 ⋅ Pr
𝐵 ∈ 𝐹

run on 𝑋′
+ 𝛿
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The Robust Shuffle Model

• The protocol we saw for counting bits has nice feature: It is resilient to dropouts
• Specifically, privacy is still preserved if a constant fraction of the users (say half) do not 

submit messages to the shuffle

[Balcer, Cheu, Joseph, Mao]
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Recall the privacy requirement we had before:

For any neighboring datasets 𝒙, 𝒙′ and any event 𝑭 we have 

Pr shuffle 𝑅 𝑥1 , … , 𝑅 𝑥𝑛 ∈ 𝐹 ≤ 𝑒 ⋅ Pr shuffle 𝑅 𝑥1
′ , … , 𝑅 𝑥𝑛

′ ∈ 𝐹 + 𝛿

Simple example of a bad protocol:

[Balcer, Cheu, Joseph, Mao]

Algorithm 𝑹 for user 1: Input 𝑥 ∈ 0,1

(1) Sample 𝑦1, 𝑦2, … , 𝑦𝑛 ∼ Bernouli 𝑝 for 𝑝 =
log

1

𝛿
2⋅𝑛

(2) Return 𝑚1 = 𝑥 ,  𝑚2 = 𝑦1 , … , 𝑚𝑛+1 = 𝑦𝑛

Algorithm on the server’s side: Input 𝑏1, … , 𝑏2𝑛 ∈ 0,1

(1) Return σ𝑖=1
2𝑛 𝑏𝑖 − 𝑛𝑝

Algorithm 𝑹 for users 2-n: Input 𝑥 ∈ 0,1
(1) Return 𝑚1 = 𝑥
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A modified privacy definition – the robust shuffle model:

For any neighboring datasets 𝒙, 𝒙′, event 𝑭, and set of induces {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒘} of size 𝒘 ≥
𝒏

𝟐
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Negative result for the shuffle model

The XOR-sum problem:
• The input of every user 𝑖 is a pair 𝑗𝑖 , 𝑏𝑖 ∈ 1,2,… , 𝑛 × 0,1
• The goal: estimate 



𝑗=1

𝑛

ໄ

𝑖:𝑗𝑖=𝑗

𝑏𝑖

Example: if the inputs are 1,1 , 1,0 , 3,0 , 1,1 , 3,0 , 2,1 , 4,1
Then the goal is to estimate 1⊕ 0⊕ 1 + 1 + 0⊕ 0 + 1 = 2

[Balcer, Cheu, Joseph, Mao]
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• The input of every user 𝑖 is a pair 𝑗𝑖 , 𝑏𝑖 ∈ 1,2,… , 𝑛 × 0,1
• The goal: estimate 



𝑗=1

𝑛

ໄ

𝑖:𝑗𝑖=𝑗

𝑏𝑖

Example: if the inputs are 1,1 , 1,0 , 3,0 , 1,1 , 3,0 , 2,1 , 4,1
Then the goal is to estimate 1⊕ 0⊕ 1 + 1 + 0⊕ 0 + 1 = 2

Observe: Removing one person’s data changes this quantity by ±1 and so this can be 

estimated with error ≈
1

in the centralized model

Informal theorem: Any robust-shuffle protocol for this problem must have error Ω 𝑛

[Balcer, Cheu, Joseph, Mao]



Proof idea: 
• Suppose there is a robust-shuffle algorithm 𝑅,𝒜 , where 𝑅 is the randomizer applied by the 

users and 𝒜 is the post-processing algorithm after the shuffle (on the server’s side)

• Let 𝑋 = 𝑥1, … , 𝑥𝑛/2 ∈ 0,1 𝑛/2 be an input dataset

• We can use 𝑅,𝒜 to answer many “Hamming distance queries” w.r.t. 𝑋 of the form:

Given 𝒀 ∈ 𝟎, 𝟏 𝒏/𝟐 approximate 𝒙𝟏 ⊕𝒚𝟏 +⋯+ 𝒙𝒏/𝟐 ⊕𝒚𝒏/𝟐

Negative result for the shuffle model [Balcer, Cheu, Joseph, Mao]
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Given 𝒀 ∈ 𝟎, 𝟏 𝒏/𝟐 approximate 𝒙𝟏 ⊕𝒚𝟏 +⋯+ 𝒙𝒏/𝟐 ⊕𝒚𝒏/𝟐

• Step 2 is just a post-processing of the output of step 1 and hence the algorithm remains 
private regardless of how many queries we answer in Step 2

• Answering “too many” queries with “too much” accuracy is impossible…

1) Output G ← Shuffle 𝑅 1, 𝑥1 , … , 𝑅
𝑛

2
, 𝑥𝑛/2 % by assumption, 𝐺 is safe for publication

2) Given a query 𝑌 = 𝑦1, … , 𝑦𝑛/2 ∈ 0,1 𝑛/2 respond with

𝒜 Shuffle 𝐺, 𝑅 1, 𝑦1 , … , 𝑅 𝑛/2, 𝑦𝑛/2

Negative result for the shuffle model [Balcer, Cheu, Joseph, Mao]



The Shuffle Model of Differential Privacy
Today’s Outline

1. Secure Multiparty Computation (MPC)

2. What is the shuffle model

3. Counting bits

4. Robustness in the shuffle model

5. Negative result for the shuffle model

6. Interaction



Interaction in the shuffle model
• The negative result for XOR-sum strongly relied on the protocol being non-interactive
• This allowed us to “pause” the computation mid-way and continue arbitrarily
• Does not work with interactive protocols
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Interaction in the shuffle model
• The negative result for XOR-sum strongly relied on the protocol being non-interactive
• This allowed us to “pause” the computation mid-way and continue arbitrarily
• Does not work with interactive protocols

Key Exchange: Definition

• User 𝒊 and user 𝒋 send messages to the shuffle

• All users see the shuffled messages

• User 𝒊 and user 𝒋 agree on a key 

• All other users together get no information on the key 32 21

…

randrand

S
h
u
ff
le

21 32

Informal theorem: Every randomized functionality can be  
computed in the shuffle model with merely two rounds



Agreeing on one bit

• User 𝒊 chooses a random bit 𝒂, sends it to the shuffle
• User 𝒋 chooses a random bit 𝒃, sends it to the shuffle
• If 𝒂 ≠ 𝒃 the common key is 𝒂, otherwise protocol fails

[IKOS‘06]

Interaction in the shuffle model
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• Users 𝒊, 𝒋 agree on a secret 𝒌-bit key with prob. 𝟏 − 𝟐−𝑶(𝒌)
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Agreeing on k bits

Theorem: With the addition of one round (for setting private channels) general MPC 
can be implemented in the shuffle model

* additional round can be avoided in some cases

Interaction in the shuffle model
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